Stochastic Optimization Algorithms for Support Vector Machines Classification
نویسنده
چکیده
In this paper, we consider the problem of semi-supervised binary classification by Support Vector Machines (SVM). This problem is explored as an unconstrained and non-smooth optimization task when part of the available data is unlabelled. We apply non-smooth optimization techniques to classification where the objective function considered is non-convex and nondifferentiable and so difficult to minimize. We explore and compare the properties of Simulated Annealing and of Simultaneous Perturbation Stochastic Approximation (SPSA) algorithms (SPSA with the Lipschitz Perturbation Operator, SPSA with the Uniform Perturbation Operator, Standard Finite Difference Approximation) for semi-supervised SVM classification. Numerical results are given, obtained by running the proposed methods on several standard test problems drawn from the binary classification literature. The performance of the classifiers were evaluated by analyzing Receiver Operating Characteristics (ROC).
منابع مشابه
A QUADRATIC MARGIN-BASED MODEL FOR WEIGHTING FUZZY CLASSIFICATION RULES INSPIRED BY SUPPORT VECTOR MACHINES
Recently, tuning the weights of the rules in Fuzzy Rule-Base Classification Systems is researched in order to improve the accuracy of classification. In this paper, a margin-based optimization model, inspired by Support Vector Machine classifiers, is proposed to compute these fuzzy rule weights. This approach not only considers both accuracy and generalization criteria in a single objective fu...
متن کاملOptimizing Hyperparameters of Support Vector Machines by Genetic Algorithms
In this paper, a combination of genetic algorithms and support vector machines (SVMs) is proposed. SVMs are used for solving classification tasks, whereas genetic algorithms are optimization heuristics combining direct and stochastic search within a solution space. Here, the solution space is formed by combinations of different SVM’s kernel functions and kernel parameters. We investigate classi...
متن کاملکاربرد الگوریتمهای دادهکاوی در تفکیک منابع رسوبی حوزۀ آبخیز نوده گناباد
Introduction: Reduction of sediment supply requires the implementation of soil conservation and sediment control programs in the form of watershed management plans. Sediment control programs require identifying the relative importance of sediment sources, their quantitative ascription and identification of critical areas within the watersheds. The sediment source ascription is involves two...
متن کاملتعیین ماشینهای بردار پشتیبان بهینه در طبقهبندی تصاویر فرا طیفی بر مبنای الگوریتم ژنتیک
Hyper spectral remote sensing imagery, due to its rich source of spectral information provides an efficient tool for ground classifications in complex geographical areas with similar classes. Referring to robustness of Support Vector Machines (SVMs) in high dimensional space, they are efficient tool for classification of hyper spectral imagery. However, there are two optimization issues which s...
متن کاملGenetic Algorithm based Feature Selection in High Dimensional Text Dataset Classification
Vector space model based bag-of-words language model is commonly used to represent documents in a corpus. But this representation model needs a high dimensional input feature space that has irrelevant and redundant features to represent all corpus files. Non-Redundant feature reduction of input space improves the generalization property of a classifier. In this study, we developed a new objecti...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Informatica, Lith. Acad. Sci.
دوره 20 شماره
صفحات -
تاریخ انتشار 2009